x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
metafunctions.hpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\gil\metafunctions.hpp
旋转
特效
属性
历史版本
/* Copyright 2005-2007 Adobe Systems Incorporated Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). See http://opensource.adobe.com/gil for most recent version including documentation. */ /*************************************************************************************************/ #ifndef GIL_METAFUNCTIONS_HPP #define GIL_METAFUNCTIONS_HPP //////////////////////////////////////////////////////////////////////////////////////// /// \file /// \brief metafunctions that construct types or return type properties /// \author Lubomir Bourdev and Hailin Jin \n /// Adobe Systems Incorporated /// /// \date 2005-2007 \n Last updated on February 6, 2007 /// //////////////////////////////////////////////////////////////////////////////////////// #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "gil_config.hpp" #include "gil_concept.hpp" #include "channel.hpp" namespace boost { namespace gil { // forward declarations template
struct pixel; template
struct packed_pixel; template
struct planar_pixel_reference; template
struct planar_pixel_iterator; template
class memory_based_step_iterator; template
class memory_based_2d_locator; template
class image_view; template
class image; template
struct channel_type; template
struct color_space_type; template
struct channel_mapping_type; template
struct is_iterator_adaptor; template
struct iterator_adaptor_get_base; template
struct bit_aligned_pixel_reference; ////////////////////////////////////////////////// /// /// TYPE ANALYSIS METAFUNCTIONS /// Predicate metafunctions determining properties of GIL types /// ////////////////////////////////////////////////// /// \defgroup GILIsBasic xxx_is_basic /// \ingroup TypeAnalysis /// \brief Determines if GIL constructs are basic. /// Basic constructs are the ones that can be generated with the type /// factory methods pixel_reference_type, iterator_type, locator_type, view_type and image_type /// They can be mutable/immutable, planar/interleaved, step/nonstep. They must use GIL-provided models. /// \brief Determines if a given pixel reference is basic /// Basic references must use gil::pixel& (if interleaved), gil::planar_pixel_reference (if planar). They must use the standard constness rules. /// \ingroup GILIsBasic template
struct pixel_reference_is_basic : public mpl::false_ {}; template
struct pixel_reference_is_basic< pixel
&> : public mpl::true_ {}; template
struct pixel_reference_is_basic
&> : public mpl::true_ {}; template
struct pixel_reference_is_basic
> : public mpl::true_ {}; template
struct pixel_reference_is_basic
> : public mpl::true_ {}; /// \brief Determines if a given pixel iterator is basic /// Basic iterators must use gil::pixel (if interleaved), gil::planar_pixel_iterator (if planar) and gil::memory_based_step_iterator (if step). They must use the standard constness rules. /// \ingroup GILIsBasic template
struct iterator_is_basic : public mpl::false_ {}; template
// mutable interleaved struct iterator_is_basic< pixel
* > : public mpl::true_ {}; template
// immutable interleaved struct iterator_is_basic
* > : public mpl::true_ {}; template
// mutable planar struct iterator_is_basic
> : public mpl::true_ {}; template
// immutable planar struct iterator_is_basic
> : public mpl::true_ {}; template
// mutable interleaved step struct iterator_is_basic
*> > : public mpl::true_ {}; template
// immutable interleaved step struct iterator_is_basic
*> > : public mpl::true_ {}; template
// mutable planar step struct iterator_is_basic
> > : public mpl::true_ {}; template
// immutable planar step struct iterator_is_basic
> > : public mpl::true_ {}; /// \ingroup GILIsBasic /// \brief Determines if a given locator is basic. A basic locator is memory-based and has basic x_iterator and y_iterator template
struct locator_is_basic : public mpl::false_ {}; template
struct locator_is_basic
> > : public iterator_is_basic
{}; /// \ingroup GILIsBasic /// \brief Basic views must be over basic locators template
struct view_is_basic : public mpl::false_ {}; template
struct view_is_basic
> : public locator_is_basic
{}; /// \ingroup GILIsBasic /// \brief Basic images must use basic views and std::allocator of char template
struct image_is_basic : public mpl::false_ {}; template
struct image_is_basic
> : public mpl::true_ {}; /// \defgroup GILIsStep xxx_is_step /// \ingroup TypeAnalysis /// \brief Determines if the given iterator/locator/view has a step that could be set dynamically template
struct iterator_is_step; namespace detail { template
struct iterator_is_step_impl; // iterator that has the same type as its dynamic_x_step_type must be a step iterator template
struct iterator_is_step_impl
: public mpl::true_{}; // base iterator can never be a step iterator template
struct iterator_is_step_impl
: public mpl::false_{}; // for an iterator adaptor, see if its base is step template
struct iterator_is_step_impl
: public iterator_is_step
::type>{}; } /// \ingroup GILIsStep /// \brief Determines if the given iterator has a step that could be set dynamically template
struct iterator_is_step : public detail::iterator_is_step_impl
::type::value, is_same
::type>::value >{}; /// \ingroup GILIsStep /// \brief Determines if the given locator has a horizontal step that could be set dynamically template
struct locator_is_step_in_x : public iterator_is_step
{}; /// \ingroup GILIsStep /// \brief Determines if the given locator has a vertical step that could be set dynamically template
struct locator_is_step_in_y : public iterator_is_step
{}; /// \ingroup GILIsStep /// \brief Determines if the given view has a horizontal step that could be set dynamically template
struct view_is_step_in_x : public locator_is_step_in_x
{}; /// \ingroup GILIsStep /// \brief Determines if the given view has a vertical step that could be set dynamically template
struct view_is_step_in_y : public locator_is_step_in_y
{}; /// \brief Determines whether the given pixel reference is a proxy class or a native C++ reference /// \ingroup TypeAnalysis template
struct pixel_reference_is_proxy : public mpl::not_
::type, typename remove_const_and_reference
::type::value_type> > {}; /// \brief Given a model of a pixel, determines whether the model represents a pixel reference (as opposed to pixel value) /// \ingroup TypeAnalysis template
struct pixel_is_reference : public mpl::or_
, pixel_reference_is_proxy
> {}; /// \defgroup GILIsMutable xxx_is_mutable /// \ingroup TypeAnalysis /// \brief Determines if the given pixel reference/iterator/locator/view is mutable (i.e. its pixels can be changed) /// \ingroup GILIsMutable /// \brief Determines if the given pixel reference is mutable (i.e. its channels can be changed) /// /// Note that built-in C++ references obey the const qualifier but reference proxy classes do not. template
struct pixel_reference_is_mutable : public mpl::bool_
::type::is_mutable> {}; template
struct pixel_reference_is_mutable
: public mpl::and_
, pixel_reference_is_mutable
> {}; /// \ingroup GILIsMutable /// \brief Determines if the given locator is mutable (i.e. its pixels can be changed) template
struct locator_is_mutable : public iterator_is_mutable
{}; /// \ingroup GILIsMutable /// \brief Determines if the given view is mutable (i.e. its pixels can be changed) template
struct view_is_mutable : public iterator_is_mutable
{}; ////////////////////////////////////////////////// /// /// TYPE FACTORY METAFUNCTIONS /// Metafunctions returning GIL types from other GIL types /// ////////////////////////////////////////////////// /// \defgroup TypeFactoryFromElements xxx_type /// \ingroup TypeFactory /// \brief Returns the type of a homogeneous GIL construct given its elements (channel, layout, whether it is planar, step, mutable, etc.) /// \defgroup TypeFactoryFromPixel xxx_type_from_pixel /// \ingroup TypeFactory /// \brief Returns the type of a GIL construct given its pixel type, whether it is planar, step, mutable, etc. /// \defgroup TypeFactoryDerived derived_xxx_type /// \ingroup TypeFactory /// \brief Returns the type of a homogeneous GIL construct given a related construct by changing some of its properties /// \ingroup TypeFactoryFromElements /// \brief Returns the type of a homogeneous pixel reference given the channel type, layout, whether it operates on planar data and whether it is mutable template
struct pixel_reference_type{}; template
struct pixel_reference_type
{ typedef pixel
& type; }; template
struct pixel_reference_type
{ typedef const pixel
& type; }; template
struct pixel_reference_type
{ typedef const planar_pixel_reference
::reference,typename color_space_type
::type> type; }; // TODO: Assert M=identity template
struct pixel_reference_type
{ typedef const planar_pixel_reference
::const_reference,typename color_space_type
::type> type; };// TODO: Assert M=identity /// \ingroup TypeFactoryFromPixel /// \brief Returns the type of a pixel iterator given the pixel type, whether it operates on planar data, whether it is a step iterator, and whether it is mutable template
struct iterator_type_from_pixel{}; template
struct iterator_type_from_pixel
{ typedef Pixel* type; }; template
struct iterator_type_from_pixel
{ typedef const Pixel* type; }; template
struct iterator_type_from_pixel
{ typedef planar_pixel_iterator
::type>::pointer,typename color_space_type
::type> type; }; template
struct iterator_type_from_pixel
{ typedef planar_pixel_iterator
::type>::const_pointer,typename color_space_type
::type> type; }; template
struct iterator_type_from_pixel
{ typedef memory_based_step_iterator
::type> type; }; /// \ingroup TypeFactoryFromElements /// \brief Returns the type of a homogeneous iterator given the channel type, layout, whether it operates on planar data, whether it is a step iterator, and whether it is mutable template
struct iterator_type{}; template
struct iterator_type
{ typedef pixel
* type; }; template
struct iterator_type
{ typedef const pixel
* type; }; template
struct iterator_type
{ typedef planar_pixel_iterator
type; }; // TODO: Assert M=identity template
struct iterator_type
{ typedef planar_pixel_iterator
type; }; // TODO: Assert M=identity template
struct iterator_type
{ typedef memory_based_step_iterator
::type> type; }; /// \brief Given a pixel iterator defining access to pixels along a row, returns the types of the corresponding built-in step_iterator, xy_locator, image_view /// \ingroup TypeFactory template
struct type_from_x_iterator { typedef memory_based_step_iterator
step_iterator_t; typedef memory_based_2d_locator
xy_locator_t; typedef image_view
view_t; }; namespace detail { template
struct packed_channel_reference_type { typedef const packed_channel_reference
type; }; template
class packed_channel_references_vector_type { // If ChannelBitSizesVector is mpl::vector
// Then first_bits_vector will be mpl::vector
typedef typename mpl::accumulate
>, mpl::push_back
, mpl::_2> > >::type first_bits_vector; public: typedef typename mpl::transform
::type, ChannelBitSizesVector, packed_channel_reference_type
>::type type; }; } /// \ingroup TypeFactoryFromElements /// \brief Returns the type of a packed pixel given its bitfield type, the bit size of its channels and its layout. /// /// A packed pixel has channels that cover bit ranges but itself is byte aligned. RGB565 pixel is an example. /// /// The size of ChannelBitSizeVector must equal the number of channels in the given layout /// The sum of bit sizes for all channels must be less than or equal to the number of bits in BitField (and cannot exceed 64). /// If it is less than the number of bits in BitField, the last bits will be unused. template
struct packed_pixel_type { typedef packed_pixel
::type, Layout> type; }; /// \defgroup TypeFactoryPacked packed_image_type,bit_aligned_image_type /// \ingroup TypeFactoryFromElements /// \brief Returns the type of an image whose channels are not byte-aligned. /// /// A packed image is an image whose pixels are byte aligned, such as "rgb565".
/// A bit-aligned image is an image whose pixels are not byte aligned, such as "rgb222".
/// /// The sum of the bit sizes of all channels cannot exceed 64. /// \ingroup TypeFactoryPacked /// \brief Returns the type of an interleaved packed image: an image whose channels may not be byte-aligned, but whose pixels are byte aligned. template
> struct packed_image_type { typedef image
::type,false,Alloc> type; }; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a single-channel image given its bitfield type, the bit size of its channel and its layout template
> struct packed_image1_type : public packed_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a two channel image given its bitfield type, the bit size of its channels and its layout template
> struct packed_image2_type : public packed_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a three channel image given its bitfield type, the bit size of its channels and its layout template
> struct packed_image3_type : public packed_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a four channel image given its bitfield type, the bit size of its channels and its layout template
> struct packed_image4_type : public packed_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a five channel image given its bitfield type, the bit size of its channels and its layout template
> struct packed_image5_type : public packed_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a packed image whose pixels may not be byte aligned. For example, an "rgb222" image is bit-aligned because its pixel spans six bits. /// /// Note that the alignment parameter in the constructor of bit-aligned images is in bit units. For example, if you want to construct a bit-aligned /// image whose rows are byte-aligned, use 8 as the alignment parameter, not 1. template
> struct bit_aligned_image_type { private: BOOST_STATIC_CONSTANT(int, bit_size = (mpl::accumulate
, mpl::plus
>::type::value)); typedef typename detail::min_fast_uint
::type bitfield_t; typedef const bit_aligned_pixel_reference
bit_alignedref_t; public: typedef image
type; }; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a single-channel bit-aligned image given the bit size of its channel and its layout template
> struct bit_aligned_image1_type : public bit_aligned_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a two channel bit-aligned image given the bit size of its channels and its layout template
> struct bit_aligned_image2_type : public bit_aligned_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a three channel bit-aligned image given the bit size of its channels and its layout template
> struct bit_aligned_image3_type : public bit_aligned_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a four channel bit-aligned image given the bit size of its channels and its layout template
> struct bit_aligned_image4_type : public bit_aligned_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryPacked /// \brief Returns the type of a five channel bit-aligned image given the bit size of its channels and its layout template
> struct bit_aligned_image5_type : public bit_aligned_image_type
, Layout, Alloc> {}; /// \ingroup TypeFactoryFromElements /// \brief Returns the type of a homogeneous pixel given the channel type and layout template
struct pixel_value_type { typedef pixel
type; // by default use gil::pixel. Specializations are provided for }; // Specializations for packed channels template
struct pixel_value_type< packed_dynamic_channel_reference
,Layout> : public packed_pixel_type
, Layout> {}; template
struct pixel_value_type
,Layout> : public packed_pixel_type
, Layout> {}; template
struct pixel_value_type< packed_channel_reference
,Layout> : public packed_pixel_type
, Layout> {}; template
struct pixel_value_type
,Layout> : public packed_pixel_type
, Layout> {}; template
struct pixel_value_type
,Layout> : public packed_pixel_type
::type, mpl::vector1_c
, Layout> {}; /// \ingroup TypeFactoryFromElements /// \brief Returns the type of a homogeneous locator given the channel type, layout, whether it operates on planar data and whether it has a step horizontally template
struct locator_type { typedef typename type_from_x_iterator
::type>::xy_locator_type type; }; /// \ingroup TypeFactoryFromElements /// \brief Returns the type of a homogeneous view given the channel type, layout, whether it operates on planar data and whether it has a step horizontally template
struct view_type { typedef typename type_from_x_iterator
::type>::view_t type; }; /// \ingroup TypeFactoryFromElements /// \brief Returns the type of a homogeneous image given the channel type, layout, and whether it operates on planar data template
> struct image_type { typedef image
, IsPlanar, Alloc> type; }; /// \ingroup TypeFactoryFromPixel /// \brief Returns the type of a view the pixel type, whether it operates on planar data and whether it has a step horizontally template
struct view_type_from_pixel { typedef typename type_from_x_iterator
::type>::view_t type; }; /// \brief Constructs a pixel reference type from a source pixel reference type by changing some of the properties. /// \ingroup TypeFactoryDerived /// Use use_default for the properties of the source view that you want to keep template
class derived_pixel_reference_type { typedef typename remove_reference
::type pixel_t; typedef typename mpl::if_
, typename channel_type
::type, T >::type channel_t; typedef typename mpl::if_
, layout
::type, typename channel_mapping_type
::type>, L>::type layout_t; static const bool mut =mpl::if_
, pixel_reference_is_mutable
, IsMutable>::type::value; static const bool planar=mpl::if_
, is_planar
, IsPlanar>::type::value; public: typedef typename pixel_reference_type
::type type; }; /// \brief Constructs a pixel iterator type from a source pixel iterator type by changing some of the properties. /// \ingroup TypeFactoryDerived /// Use use_default for the properties of the source view that you want to keep template
class derived_iterator_type { typedef typename mpl::if_
, typename channel_type
::type, T >::type channel_t; typedef typename mpl::if_
, layout
::type, typename channel_mapping_type
::type>, L>::type layout_t; static const bool mut =mpl::if_
, iterator_is_mutable
, IsMutable>::type::value; static const bool planar=mpl::if_
, is_planar
, IsPlanar>::type::value; static const bool step =mpl::if_
, iterator_is_step
, IsStep>::type::value; public: typedef typename iterator_type
::type type; }; /// \brief Constructs an image view type from a source view type by changing some of the properties. /// \ingroup TypeFactoryDerived /// Use use_default for the properties of the source view that you want to keep template
class derived_view_type { typedef typename mpl::if_
, typename channel_type
::type, T>::type channel_t; typedef typename mpl::if_
, layout
::type, typename channel_mapping_type
::type>, L>::type layout_t; static const bool mut =mpl::if_
, view_is_mutable