x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
polynomial.hpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\math\tools\polynomial.hpp
旋转
特效
属性
历史版本
// (C) Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP #define BOOST_MATH_TOOLS_POLYNOMIAL_HPP #include
#include
#include
#include
namespace boost{ namespace math{ namespace tools{ template
class polynomial { public: // typedefs: typedef typename std::vector
::value_type value_type; typedef typename std::vector
::size_type size_type; // construct: polynomial(){} template
polynomial(const U* data, unsigned order) : m_data(data, data + order + 1) { } template
polynomial(const U& point) { m_data.push_back(point); } // copy: polynomial(const polynomial& p) : m_data(p.m_data) { } template
polynomial(const polynomial
& p) { for(unsigned i = 0; i < p.size(); ++i) { m_data.push_back(boost::math::tools::real_cast
(p[i])); } } // access: size_type size()const { return m_data.size(); } size_type degree()const { return m_data.size() - 1; } value_type& operator[](size_type i) { return m_data[i]; } const value_type& operator[](size_type i)const { return m_data[i]; } T evaluate(T z)const { return boost::math::tools::evaluate_polynomial(&m_data[0], z, m_data.size());; } // operators: template
polynomial& operator +=(const U& value) { if(m_data.size() == 0) m_data.push_back(value); else { m_data[0] += value; } return *this; } template
polynomial& operator -=(const U& value) { if(m_data.size() == 0) m_data.push_back(-value); else { m_data[0] -= value; } return *this; } template
polynomial& operator *=(const U& value) { for(size_type i = 0; i < m_data.size(); ++i) m_data[i] *= value; return *this; } template
polynomial& operator +=(const polynomial
& value) { size_type s1 = (std::min)(m_data.size(), value.size()); for(size_type i = 0; i < s1; ++i) m_data[i] += value[i]; for(size_type i = s1; i < value.size(); ++i) m_data.push_back(value[i]); return *this; } template
polynomial& operator -=(const polynomial
& value) { size_type s1 = (std::min)(m_data.size(), value.size()); for(size_type i = 0; i < s1; ++i) m_data[i] -= value[i]; for(size_type i = s1; i < value.size(); ++i) m_data.push_back(-value[i]); return *this; } template
polynomial& operator *=(const polynomial
& value) { // TODO: FIXME: use O(N log(N)) algorithm!!! BOOST_ASSERT(value.size()); polynomial base(*this); *this *= value[0]; for(size_type i = 1; i < value.size(); ++i) { polynomial t(base); t *= value[i]; size_type s = size() - i; for(size_type j = 0; j < s; ++j) { m_data[i+j] += t[j]; } for(size_type j = s; j < t.size(); ++j) m_data.push_back(t[j]); } return *this; } private: std::vector
m_data; }; template
inline polynomial
operator + (const polynomial
& a, const polynomial
& b) { polynomial
result(a); result += b; return result; } template
inline polynomial
operator - (const polynomial
& a, const polynomial
& b) { polynomial
result(a); result -= b; return result; } template
inline polynomial
operator * (const polynomial
& a, const polynomial
& b) { polynomial
result(a); result *= b; return result; } template
inline polynomial
operator + (const polynomial
& a, const U& b) { polynomial
result(a); result += b; return result; } template
inline polynomial
operator - (const polynomial
& a, const U& b) { polynomial
result(a); result -= b; return result; } template
inline polynomial
operator * (const polynomial
& a, const U& b) { polynomial
result(a); result *= b; return result; } template
inline polynomial
operator + (const U& a, const polynomial
& b) { polynomial
result(b); result += a; return result; } template
inline polynomial
operator - (const U& a, const polynomial
& b) { polynomial
result(a); result -= b; return result; } template
inline polynomial
operator * (const U& a, const polynomial
& b) { polynomial
result(b); result *= a; return result; } template
inline std::basic_ostream
& operator << (std::basic_ostream
& os, const polynomial
& poly) { os << "{ "; for(unsigned i = 0; i < poly.size(); ++i) { if(i) os << ", "; os << poly[i]; } os << " }"; return os; } } // namespace tools } // namespace math } // namespace boost #endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP
polynomial.hpp
网页地址
文件地址
上一页
4/19
下一页
下载
( 5 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.