x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btTransformUtil.h - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_sdk\src\LinearMath\btTransformUtil.h
旋转
特效
属性
历史版本
/* Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef SIMD_TRANSFORM_UTIL_H #define SIMD_TRANSFORM_UTIL_H #include "btTransform.h" #define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI #define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490) #define btRecipSqrt(x) ((btScalar)(btScalar(1.0)/btSqrt(btScalar(x)))) /* reciprocal square root */ SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir) { return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(), supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(), supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z()); } SIMD_FORCE_INLINE void btPlaneSpace1 (const btVector3& n, btVector3& p, btVector3& q) { if (btFabs(n.z()) > SIMDSQRT12) { // choose p in y-z plane btScalar a = n[1]*n[1] + n[2]*n[2]; btScalar k = btRecipSqrt (a); p.setValue(0,-n[2]*k,n[1]*k); // set q = n x p q.setValue(a*k,-n[0]*p[2],n[0]*p[1]); } else { // choose p in x-y plane btScalar a = n.x()*n.x() + n.y()*n.y(); btScalar k = btRecipSqrt (a); p.setValue(-n.y()*k,n.x()*k,0); // set q = n x p q.setValue(-n.z()*p.y(),n.z()*p.x(),a*k); } } /// Utils related to temporal transforms class btTransformUtil { public: static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform) { predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep); // #define QUATERNION_DERIVATIVE #ifdef QUATERNION_DERIVATIVE btQuaternion predictedOrn = curTrans.getRotation(); predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5)); predictedOrn.normalize(); #else //Exponential map //google for "Practical Parameterization of Rotations Using the Exponential Map", F. Sebastian Grassia btVector3 axis; btScalar fAngle = angvel.length(); //limit the angular motion if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD) { fAngle = ANGULAR_MOTION_THRESHOLD / timeStep; } if ( fAngle < btScalar(0.001) ) { // use Taylor's expansions of sync function axis = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle ); } else { // sync(fAngle) = sin(c*fAngle)/t axis = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle ); } btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) )); btQuaternion orn0 = curTrans.getRotation(); btQuaternion predictedOrn = dorn * orn0; predictedOrn.normalize(); #endif predictedTransform.setRotation(predictedOrn); } static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel) { linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep; btVector3 axis; btScalar angle; calculateDiffAxisAngle(transform0,transform1,axis,angle); angVel = axis * angle / timeStep; } static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle) { #ifdef USE_QUATERNION_DIFF btQuaternion orn0 = transform0.getRotation(); btQuaternion orn1a = transform1.getRotation(); btQuaternion orn1 = orn0.farthest(orn1a); btQuaternion dorn = orn1 * orn0.inverse(); #else btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse(); btQuaternion dorn; dmat.getRotation(dorn); #endif//USE_QUATERNION_DIFF ///floating point inaccuracy can lead to w component > 1..., which breaks dorn.normalize(); angle = dorn.getAngle(); axis = btVector3(dorn.x(),dorn.y(),dorn.z()); axis[3] = btScalar(0.); //check for axis length btScalar len = axis.length2(); if (len < SIMD_EPSILON*SIMD_EPSILON) axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.)); else axis /= btSqrt(len); } }; #endif //SIMD_TRANSFORM_UTIL_H
btTransformUtil.h
网页地址
文件地址
上一页
23/27
下一页
下载
( 4 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.