x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btOptimizedBvh.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletCollision\CollisionShapes\btOptimizedBvh.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btOptimizedBvh.h" #include "btStridingMeshInterface.h" #include "LinearMath/btAabbUtil2.h" #include "LinearMath/btIDebugDraw.h" btOptimizedBvh::btOptimizedBvh() : m_useQuantization(false), //m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) m_traversalMode(TRAVERSAL_STACKLESS) //m_traversalMode(TRAVERSAL_RECURSIVE) ,m_subtreeHeaderCount(0) //PCK: add this line { } void btOptimizedBvh::build(btStridingMeshInterface* triangles, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax) { m_useQuantization = useQuantizedAabbCompression; // NodeArray triangleNodes; struct NodeTriangleCallback : public btInternalTriangleIndexCallback { NodeArray& m_triangleNodes; NodeTriangleCallback& operator=(NodeTriangleCallback& other) { m_triangleNodes = other.m_triangleNodes; return *this; } NodeTriangleCallback(NodeArray& triangleNodes) :m_triangleNodes(triangleNodes) { } virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex) { btOptimizedBvhNode node; btVector3 aabbMin,aabbMax; aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30)); aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); aabbMin.setMin(triangle[0]); aabbMax.setMax(triangle[0]); aabbMin.setMin(triangle[1]); aabbMax.setMax(triangle[1]); aabbMin.setMin(triangle[2]); aabbMax.setMax(triangle[2]); //with quantization? node.m_aabbMinOrg = aabbMin; node.m_aabbMaxOrg = aabbMax; node.m_escapeIndex = -1; //for child nodes node.m_subPart = partId; node.m_triangleIndex = triangleIndex; m_triangleNodes.push_back(node); } }; struct QuantizedNodeTriangleCallback : public btInternalTriangleIndexCallback { QuantizedNodeArray& m_triangleNodes; const btOptimizedBvh* m_optimizedTree; // for quantization QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other) { m_triangleNodes = other.m_triangleNodes; m_optimizedTree = other.m_optimizedTree; return *this; } QuantizedNodeTriangleCallback(QuantizedNodeArray& triangleNodes,const btOptimizedBvh* tree) :m_triangleNodes(triangleNodes),m_optimizedTree(tree) { } virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex) { // The partId and triangle index must fit in the same (positive) integer btAssert(partId < (1<
=0); btQuantizedBvhNode node; btVector3 aabbMin,aabbMax; aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30)); aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); aabbMin.setMin(triangle[0]); aabbMax.setMax(triangle[0]); aabbMin.setMin(triangle[1]); aabbMax.setMax(triangle[1]); aabbMin.setMin(triangle[2]); aabbMax.setMax(triangle[2]); //PCK: add these checks for zero dimensions of aabb const btScalar MIN_AABB_DIMENSION = btScalar(0.002); const btScalar MIN_AABB_HALF_DIMENSION = btScalar(0.001); if (aabbMax.x() - aabbMin.x() < MIN_AABB_DIMENSION) { aabbMax.setX(aabbMax.x() + MIN_AABB_HALF_DIMENSION); aabbMin.setX(aabbMin.x() - MIN_AABB_HALF_DIMENSION); } if (aabbMax.y() - aabbMin.y() < MIN_AABB_DIMENSION) { aabbMax.setY(aabbMax.y() + MIN_AABB_HALF_DIMENSION); aabbMin.setY(aabbMin.y() - MIN_AABB_HALF_DIMENSION); } if (aabbMax.z() - aabbMin.z() < MIN_AABB_DIMENSION) { aabbMax.setZ(aabbMax.z() + MIN_AABB_HALF_DIMENSION); aabbMin.setZ(aabbMin.z() - MIN_AABB_HALF_DIMENSION); } m_optimizedTree->quantize(&node.m_quantizedAabbMin[0],aabbMin,0); m_optimizedTree->quantize(&node.m_quantizedAabbMax[0],aabbMax,1); node.m_escapeIndexOrTriangleIndex = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex; m_triangleNodes.push_back(node); } }; int numLeafNodes = 0; if (m_useQuantization) { //initialize quantization values setQuantizationValues(bvhAabbMin,bvhAabbMax); QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes,this); triangles->InternalProcessAllTriangles(&callback,m_bvhAabbMin,m_bvhAabbMax); //now we have an array of leafnodes in m_leafNodes numLeafNodes = m_quantizedLeafNodes.size(); m_quantizedContiguousNodes.resize(2*numLeafNodes); } else { NodeTriangleCallback callback(m_leafNodes); btVector3 aabbMin(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30)); triangles->InternalProcessAllTriangles(&callback,aabbMin,aabbMax); //now we have an array of leafnodes in m_leafNodes numLeafNodes = m_leafNodes.size(); m_contiguousNodes.resize(2*numLeafNodes); } m_curNodeIndex = 0; buildTree(0,numLeafNodes); ///if the entire tree is small then subtree size, we need to create a header info for the tree if(m_useQuantization && !m_SubtreeHeaders.size()) { btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); subtree.m_rootNodeIndex = 0; subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); } //PCK: update the copy of the size m_subtreeHeaderCount = m_SubtreeHeaders.size(); //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary m_quantizedLeafNodes.clear(); m_leafNodes.clear(); } void btOptimizedBvh::refitPartial(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax) { //incrementally initialize quantization values btAssert(m_useQuantization); btAssert(aabbMin.getX() > m_bvhAabbMin.getX()); btAssert(aabbMin.getY() > m_bvhAabbMin.getY()); btAssert(aabbMin.getZ() > m_bvhAabbMin.getZ()); btAssert(aabbMax.getX() < m_bvhAabbMax.getX()); btAssert(aabbMax.getY() < m_bvhAabbMax.getY()); btAssert(aabbMax.getZ() < m_bvhAabbMax.getZ()); ///we should update all quantization values, using updateBvhNodes(meshInterface); ///but we only update chunks that overlap the given aabb unsigned short quantizedQueryAabbMin[3]; unsigned short quantizedQueryAabbMax[3]; quantize(&quantizedQueryAabbMin[0],aabbMin,0); quantize(&quantizedQueryAabbMax[0],aabbMax,1); int i; for (i=0;i
m_SubtreeHeaders.size();i++) { btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; //PCK: unsigned instead of bool unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); if (overlap != 0) { updateBvhNodes(meshInterface,subtree.m_rootNodeIndex,subtree.m_rootNodeIndex+subtree.m_subtreeSize,i); subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]); } } } ///just for debugging, to visualize the individual patches/subtrees #ifdef DEBUG_PATCH_COLORS btVector3 color[4]= { btVector3(255,0,0), btVector3(0,255,0), btVector3(0,0,255), btVector3(0,255,255) }; #endif //DEBUG_PATCH_COLORS void btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface,int firstNode,int endNode,int index) { (void)index; btAssert(m_useQuantization); int curNodeSubPart=-1; //get access info to trianglemesh data const unsigned char *vertexbase; int numverts; PHY_ScalarType type; int stride; const unsigned char *indexbase; int indexstride; int numfaces; PHY_ScalarType indicestype; btVector3 triangleVerts[3]; btVector3 aabbMin,aabbMax; const btVector3& meshScaling = meshInterface->getScaling(); int i; for (i=endNode-1;i>=firstNode;i--) { btQuantizedBvhNode& curNode = m_quantizedContiguousNodes[i]; if (curNode.isLeafNode()) { //recalc aabb from triangle data int nodeSubPart = curNode.getPartId(); int nodeTriangleIndex = curNode.getTriangleIndex(); if (nodeSubPart != curNodeSubPart) { if (curNodeSubPart >= 0) meshInterface->unLockReadOnlyVertexBase(curNodeSubPart); meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,nodeSubPart); btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT); } //triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts, int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride); for (int j=2;j>=0;j--) { int graphicsindex = indicestype==PHY_SHORT?((short*)gfxbase)[j]:gfxbase[j]; btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride); #ifdef DEBUG_PATCH_COLORS btVector3 mycolor = color[index&3]; graphicsbase[8] = mycolor.getX(); graphicsbase[9] = mycolor.getY(); graphicsbase[10] = mycolor.getZ(); #endif //DEBUG_PATCH_COLORS triangleVerts[j] = btVector3( graphicsbase[0]*meshScaling.getX(), graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ()); } aabbMin.setValue(btScalar(1e30),btScalar(1e30),btScalar(1e30)); aabbMax.setValue(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)); aabbMin.setMin(triangleVerts[0]); aabbMax.setMax(triangleVerts[0]); aabbMin.setMin(triangleVerts[1]); aabbMax.setMax(triangleVerts[1]); aabbMin.setMin(triangleVerts[2]); aabbMax.setMax(triangleVerts[2]); quantize(&curNode.m_quantizedAabbMin[0],aabbMin,0); quantize(&curNode.m_quantizedAabbMax[0],aabbMax,1); } else { //combine aabb from both children btQuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i+1]; btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i+2] : &m_quantizedContiguousNodes[i+1+leftChildNode->getEscapeIndex()]; { for (int i=0;i<3;i++) { curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i]; if (curNode.m_quantizedAabbMin[i]>rightChildNode->m_quantizedAabbMin[i]) curNode.m_quantizedAabbMin[i]=rightChildNode->m_quantizedAabbMin[i]; curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i]; if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i]) curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i]; } } } } if (curNodeSubPart >= 0) meshInterface->unLockReadOnlyVertexBase(curNodeSubPart); } void btOptimizedBvh::setQuantizationValues(const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,btScalar quantizationMargin) { //enlarge the AABB to avoid division by zero when initializing the quantization values btVector3 clampValue(quantizationMargin,quantizationMargin,quantizationMargin); m_bvhAabbMin = bvhAabbMin - clampValue; m_bvhAabbMax = bvhAabbMax + clampValue; btVector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; m_bvhQuantization = btVector3(btScalar(65533.0),btScalar(65533.0),btScalar(65533.0)) / aabbSize; } void btOptimizedBvh::refit(btStridingMeshInterface* meshInterface,const btVector3& aabbMin,const btVector3& aabbMax) { if (m_useQuantization) { setQuantizationValues(aabbMin,aabbMax); updateBvhNodes(meshInterface,0,m_curNodeIndex,0); ///now update all subtree headers int i; for (i=0;i
gMaxStackDepth) gMaxStackDepth = gStackDepth; #endif //DEBUG_TREE_BUILDING int splitAxis, splitIndex, i; int numIndices =endIndex-startIndex; int curIndex = m_curNodeIndex; assert(numIndices>0); if (numIndices==1) { #ifdef DEBUG_TREE_BUILDING gStackDepth--; #endif //DEBUG_TREE_BUILDING assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex); m_curNodeIndex++; return; } //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. splitAxis = calcSplittingAxis(startIndex,endIndex); splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis); int internalNodeIndex = m_curNodeIndex; setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin); setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax); for (i=startIndex;i
m_escapeIndex; int leftChildNodexIndex = m_curNodeIndex; //build left child tree buildTree(startIndex,splitIndex); int rightChildNodexIndex = m_curNodeIndex; //build right child tree buildTree(splitIndex,endIndex); #ifdef DEBUG_TREE_BUILDING gStackDepth--; #endif //DEBUG_TREE_BUILDING int escapeIndex = m_curNodeIndex - curIndex; if (m_useQuantization) { //escapeIndex is the number of nodes of this subtree const int sizeQuantizedNode =sizeof(btQuantizedBvhNode); const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) { updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex); } } setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex); } void btOptimizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex) { btAssert(m_useQuantization); btQuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); int leftSubTreeSizeInBytes = leftSubTreeSize * sizeof(btQuantizedBvhNode); btQuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); int rightSubTreeSizeInBytes = rightSubTreeSize * sizeof(btQuantizedBvhNode); if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) { btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); subtree.setAabbFromQuantizeNode(leftChildNode); subtree.m_rootNodeIndex = leftChildNodexIndex; subtree.m_subtreeSize = leftSubTreeSize; } if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) { btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); subtree.setAabbFromQuantizeNode(rightChildNode); subtree.m_rootNodeIndex = rightChildNodexIndex; subtree.m_subtreeSize = rightSubTreeSize; } //PCK: update the copy of the size m_subtreeHeaderCount = m_SubtreeHeaders.size(); } int btOptimizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis) { int i; int splitIndex =startIndex; int numIndices = endIndex - startIndex; btScalar splitValue; btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); for (i=startIndex;i
splitValue) { //swap swapLeafNodes(i,splitIndex); splitIndex++; } } //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex //otherwise the tree-building might fail due to stack-overflows in certain cases. //unbalanced1 is unsafe: it can cause stack overflows //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); //unbalanced2 should work too: always use center (perfect balanced trees) //bool unbalanced2 = true; //this should be safe too: int rangeBalancedIndices = numIndices/3; bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); if (unbalanced) { splitIndex = startIndex+ (numIndices>>1); } bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); btAssert(!unbal); return splitIndex; } int btOptimizedBvh::calcSplittingAxis(int startIndex,int endIndex) { int i; btVector3 means(btScalar(0.),btScalar(0.),btScalar(0.)); btVector3 variance(btScalar(0.),btScalar(0.),btScalar(0.)); int numIndices = endIndex-startIndex; for (i=startIndex;i
m_aabbMinOrg,rootNode->m_aabbMaxOrg); isLeafNode = rootNode->m_escapeIndex == -1; //PCK: unsigned instead of bool if (isLeafNode && (aabbOverlap != 0)) { nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); } //PCK: unsigned instead of bool if ((aabbOverlap != 0) || isLeafNode) { rootNode++; curIndex++; } else { escapeIndex = rootNode->m_escapeIndex; rootNode += escapeIndex; curIndex += escapeIndex; } } if (maxIterations < walkIterations) maxIterations = walkIterations; } /* ///this was the original recursive traversal, before we optimized towards stackless traversal void btOptimizedBvh::walkTree(btOptimizedBvhNode* rootNode,btNodeOverlapCallback* nodeCallback,const btVector3& aabbMin,const btVector3& aabbMax) const { bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); if (aabbOverlap) { isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); if (isLeafNode) { nodeCallback->processNode(rootNode); } else { walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); } } } */ void btOptimizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const btQuantizedBvhNode* currentNode,btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const { btAssert(m_useQuantization); bool isLeafNode; //PCK: unsigned instead of bool unsigned aabbOverlap; //PCK: unsigned instead of bool aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax); isLeafNode = currentNode->isLeafNode(); //PCK: unsigned instead of bool if (aabbOverlap != 0) { if (isLeafNode) { nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex()); } else { //process left and right children const btQuantizedBvhNode* leftChildNode = currentNode+1; walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); const btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex(); walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); } } } void btOptimizedBvh::walkStacklessQuantizedTreeAgainstRay(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax, int startNodeIndex,int endNodeIndex) const { btAssert(m_useQuantization); int curIndex = startNodeIndex; int walkIterations = 0; int subTreeSize = endNodeIndex - startNodeIndex; const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; int escapeIndex; bool isLeafNode; //PCK: unsigned instead of bool unsigned boxBoxOverlap = 0; unsigned rayBoxOverlap = 0; btScalar lambda_max = 1.0; #define RAYAABB2 #ifdef RAYAABB2 btVector3 rayFrom = raySource; btVector3 rayDirection = (rayTarget-raySource); rayDirection.normalize (); lambda_max = rayDirection.dot(rayTarget-raySource); ///what about division by zero? rayDirection[0] = btScalar(1.0) / rayDirection[0]; rayDirection[1] = btScalar(1.0) / rayDirection[1]; rayDirection[2] = btScalar(1.0) / rayDirection[2]; unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; #endif /* Quick pruning by quantized box */ btVector3 rayAabbMin = raySource; btVector3 rayAabbMax = raySource; rayAabbMin.setMin(rayTarget); rayAabbMax.setMax(rayTarget); /* Add box cast extents to bounding box */ rayAabbMin += aabbMin; rayAabbMax += aabbMax; unsigned short int quantizedQueryAabbMin[3]; unsigned short int quantizedQueryAabbMax[3]; quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0); quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1); while (curIndex < endNodeIndex) { //#define VISUALLY_ANALYZE_BVH 1 #ifdef VISUALLY_ANALYZE_BVH //some code snippet to debugDraw aabb, to visually analyze bvh structure static int drawPatch = 0; //need some global access to a debugDrawer extern btIDebugDraw* debugDrawerPtr; if (curIndex==drawPatch) { btVector3 aabbMin,aabbMax; aabbMin = unQuantize(rootNode->m_quantizedAabbMin); aabbMax = unQuantize(rootNode->m_quantizedAabbMax); btVector3 color(1,0,0); debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); } #endif//VISUALLY_ANALYZE_BVH //catch bugs in tree data assert (walkIterations < subTreeSize); walkIterations++; //PCK: unsigned instead of bool // only interested if this is closer than any previous hit btScalar param = 1.0; rayBoxOverlap = 0; boxBoxOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); isLeafNode = rootNode->isLeafNode(); if (boxBoxOverlap) { btVector3 bounds[2]; bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); /* Add box cast extents */ bounds[0] += aabbMin; bounds[1] += aabbMax; btVector3 normal; #if 0 bool ra2 = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); bool ra = btRayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); if (ra2 != ra) { printf("functions don't match\n"); } #endif #ifdef RAYAABB2 ///careful with this check: need to check division by zero (above) and fix the unQuantize method ///thanks Joerg/hiker for the reproduction case! ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); #else rayBoxOverlap = true;//btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); #endif } if (isLeafNode && rayBoxOverlap) { nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); } //PCK: unsigned instead of bool if ((rayBoxOverlap != 0) || isLeafNode) { rootNode++; curIndex++; } else { escapeIndex = rootNode->getEscapeIndex(); rootNode += escapeIndex; curIndex += escapeIndex; } } if (maxIterations < walkIterations) maxIterations = walkIterations; } void btOptimizedBvh::walkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const { btAssert(m_useQuantization); int curIndex = startNodeIndex; int walkIterations = 0; int subTreeSize = endNodeIndex - startNodeIndex; const btQuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; int escapeIndex; bool isLeafNode; //PCK: unsigned instead of bool unsigned aabbOverlap; while (curIndex < endNodeIndex) { //#define VISUALLY_ANALYZE_BVH 1 #ifdef VISUALLY_ANALYZE_BVH //some code snippet to debugDraw aabb, to visually analyze bvh structure static int drawPatch = 0; //need some global access to a debugDrawer extern btIDebugDraw* debugDrawerPtr; if (curIndex==drawPatch) { btVector3 aabbMin,aabbMax; aabbMin = unQuantize(rootNode->m_quantizedAabbMin); aabbMax = unQuantize(rootNode->m_quantizedAabbMax); btVector3 color(1,0,0); debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); } #endif//VISUALLY_ANALYZE_BVH //catch bugs in tree data assert (walkIterations < subTreeSize); walkIterations++; //PCK: unsigned instead of bool aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); isLeafNode = rootNode->isLeafNode(); if (isLeafNode && aabbOverlap) { nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); } //PCK: unsigned instead of bool if ((aabbOverlap != 0) || isLeafNode) { rootNode++; curIndex++; } else { escapeIndex = rootNode->getEscapeIndex(); rootNode += escapeIndex; curIndex += escapeIndex; } } if (maxIterations < walkIterations) maxIterations = walkIterations; } //This traversal can be called from Playstation 3 SPU void btOptimizedBvh::walkStacklessQuantizedTreeCacheFriendly(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const { btAssert(m_useQuantization); int i; for (i=0;i
m_SubtreeHeaders.size();i++) { const btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; //PCK: unsigned instead of bool unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); if (overlap != 0) { walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, subtree.m_rootNodeIndex, subtree.m_rootNodeIndex+subtree.m_subtreeSize); } } } void btOptimizedBvh::reportRayOverlappingNodex (btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget) const { bool fast_path = m_useQuantization && m_traversalMode == TRAVERSAL_STACKLESS; if (fast_path) { walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, btVector3(0, 0, 0), btVector3(0, 0, 0), 0, m_curNodeIndex); } else { /* Otherwise fallback to AABB overlap test */ btVector3 aabbMin = raySource; btVector3 aabbMax = raySource; aabbMin.setMin(rayTarget); aabbMax.setMax(rayTarget); reportAabbOverlappingNodex(nodeCallback,aabbMin,aabbMax); } } void btOptimizedBvh::reportBoxCastOverlappingNodex(btNodeOverlapCallback* nodeCallback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin,const btVector3& aabbMax) const { bool fast_path = m_useQuantization && m_traversalMode == TRAVERSAL_STACKLESS; if (fast_path) { walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); } else { /* Slow path: Construct the bounding box for the entire box cast and send that down the tree */ btVector3 qaabbMin = raySource; btVector3 qaabbMax = raySource; qaabbMin.setMin(rayTarget); qaabbMax.setMax(rayTarget); qaabbMin += aabbMin; qaabbMax += aabbMax; reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); } } void btOptimizedBvh::swapLeafNodes(int i,int splitIndex) { if (m_useQuantization) { btQuantizedBvhNode tmp = m_quantizedLeafNodes[i]; m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; m_quantizedLeafNodes[splitIndex] = tmp; } else { btOptimizedBvhNode tmp = m_leafNodes[i]; m_leafNodes[i] = m_leafNodes[splitIndex]; m_leafNodes[splitIndex] = tmp; } } void btOptimizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex) { if (m_useQuantization) { m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; } else { m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; } } //PCK: include #include
//PCK: consts static const unsigned BVH_ALIGNMENT = 16; static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; static const unsigned BVH_ALIGNMENT_BLOCKS = 2; unsigned int btOptimizedBvh::getAlignmentSerializationPadding() { return BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; } unsigned btOptimizedBvh::calculateSerializeBufferSize() { unsigned baseSize = sizeof(btOptimizedBvh) + getAlignmentSerializationPadding(); baseSize += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; if (m_useQuantization) { return baseSize + m_curNodeIndex * sizeof(btQuantizedBvhNode); } return baseSize + m_curNodeIndex * sizeof(btOptimizedBvhNode); } bool btOptimizedBvh::serialize(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) { assert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); m_subtreeHeaderCount = m_SubtreeHeaders.size(); /* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) { ///check alignedment for buffer? btAssert(0); return false; } */ btOptimizedBvh *targetBvh = (btOptimizedBvh *)o_alignedDataBuffer; // construct the class so the virtual function table, etc will be set up // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor new (targetBvh) btOptimizedBvh; if (i_swapEndian) { targetBvh->m_curNodeIndex = btSwapEndian(m_curNodeIndex); btSwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin); btSwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax); btSwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization); targetBvh->m_traversalMode = (btTraversalMode)btSwapEndian(m_traversalMode); targetBvh->m_subtreeHeaderCount = btSwapEndian(m_subtreeHeaderCount); } else { targetBvh->m_curNodeIndex = m_curNodeIndex; targetBvh->m_bvhAabbMin = m_bvhAabbMin; targetBvh->m_bvhAabbMax = m_bvhAabbMax; targetBvh->m_bvhQuantization = m_bvhQuantization; targetBvh->m_traversalMode = m_traversalMode; targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; } targetBvh->m_useQuantization = m_useQuantization; unsigned char *nodeData = (unsigned char *)targetBvh; nodeData += sizeof(btOptimizedBvh); unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; nodeData += sizeToAdd; int nodeCount = m_curNodeIndex; if (m_useQuantization) { targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); if (i_swapEndian) { for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) { targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = btSwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex); } } else { for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) { targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; } } nodeData += sizeof(btQuantizedBvhNode) * nodeCount; } else { targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); if (i_swapEndian) { for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) { btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); btSwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = btSwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex); targetBvh->m_contiguousNodes[nodeIndex].m_subPart = btSwapEndian(m_contiguousNodes[nodeIndex].m_subPart); targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = btSwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex); } } else { for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) { targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; } } nodeData += sizeof(btOptimizedBvhNode) * nodeCount; } sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; nodeData += sizeToAdd; // Now serialize the subtree headers targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); if (i_swapEndian) { for (int i = 0; i < m_subtreeHeaderCount; i++) { targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = btSwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex); targetBvh->m_SubtreeHeaders[i].m_subtreeSize = btSwapEndian(m_SubtreeHeaders[i].m_subtreeSize); } } else { for (int i = 0; i < m_subtreeHeaderCount; i++) { targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); targetBvh->m_SubtreeHeaders[i] = m_SubtreeHeaders[i]; } } nodeData += sizeof(btBvhSubtreeInfo) * m_subtreeHeaderCount; return true; } btOptimizedBvh *btOptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) { if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) { return NULL; } btOptimizedBvh *bvh = (btOptimizedBvh *)i_alignedDataBuffer; if (i_swapEndian) { bvh->m_curNodeIndex = btSwapEndian(bvh->m_curNodeIndex); btUnSwapVector3Endian(bvh->m_bvhAabbMin); btUnSwapVector3Endian(bvh->m_bvhAabbMax); btUnSwapVector3Endian(bvh->m_bvhQuantization); bvh->m_traversalMode = (btTraversalMode)btSwapEndian(bvh->m_traversalMode); bvh->m_subtreeHeaderCount = btSwapEndian(bvh->m_subtreeHeaderCount); } unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); btAssert(calculatedBufSize <= i_dataBufferSize); if (calculatedBufSize > i_dataBufferSize) { return NULL; } unsigned char *nodeData = (unsigned char *)bvh; nodeData += sizeof(btOptimizedBvh); unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; nodeData += sizeToAdd; int nodeCount = bvh->m_curNodeIndex; // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor new (bvh) btOptimizedBvh(*bvh, false); if (bvh->m_useQuantization) { bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); if (i_swapEndian) { for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) { bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = btSwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex); } } nodeData += sizeof(btQuantizedBvhNode) * nodeCount; } else { bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); if (i_swapEndian) { for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) { btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); btUnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex); bvh->m_contiguousNodes[nodeIndex].m_subPart = btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart); bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = btSwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex); } } nodeData += sizeof(btOptimizedBvhNode) * nodeCount; } sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; nodeData += sizeToAdd; // Now serialize the subtree headers bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); if (i_swapEndian) { for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) { bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = btSwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); bvh->m_SubtreeHeaders[i].m_rootNodeIndex = btSwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex); bvh->m_SubtreeHeaders[i].m_subtreeSize = btSwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize); } } return bvh; } // Constructor that prevents btVector3's default constructor from being called btOptimizedBvh::btOptimizedBvh(btOptimizedBvh &self, bool ownsMemory) : m_bvhAabbMin(self.m_bvhAabbMin), m_bvhAabbMax(self.m_bvhAabbMax), m_bvhQuantization(self.m_bvhQuantization) { }
btOptimizedBvh.cpp
网页地址
文件地址
上一页
34/58
下一页
下载
( 44 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.