x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btGjkEpa.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletCollision\NarrowPhaseCollision\btGjkEpa.cpp
旋转
特效
属性
历史版本
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /* GJK-EPA collision solver by Nathanael Presson Nov.2006 */ #include "btGjkEpa.h" #include
//for memset #include "LinearMath/btStackAlloc.h" #if defined(DEBUG) || defined (_DEBUG) #include
//for debug printf #ifdef __SPU__ #include
#define printf spu_printf #endif //__SPU__ #endif namespace gjkepa_impl { // // Port. typedefs // typedef btScalar F; typedef bool Z; typedef int I; typedef unsigned int U; typedef unsigned char U1; typedef unsigned short U2; typedef btVector3 Vector3; typedef btMatrix3x3 Rotation; // // Config // #if 0 #define BTLOCALSUPPORT localGetSupportingVertexWithoutMargin #else #define BTLOCALSUPPORT localGetSupportingVertex #endif // // Const // #define cstInf SIMD_INFINITY #define cstPi SIMD_PI #define cst2Pi SIMD_2_PI #define GJK_maxiterations (128) #define GJK_hashsize (1<<6) #define GJK_hashmask (GJK_hashsize-1) #define GJK_insimplex_eps F(0.0001) #define GJK_sqinsimplex_eps (GJK_insimplex_eps*GJK_insimplex_eps) #define EPA_maxiterations 256 #define EPA_inface_eps F(0.01) #define EPA_accuracy F(0.001) // // Utils // static inline F Abs(F v) { return(v<0?-v:v); } static inline F Sign(F v) { return(F(v<0?-1:1)); } template
static inline void Swap(T& a,T& b) { T t(a);a=b;b=t; } template
static inline T Min(const T& a,const T& b) { return(a
static inline T Max(const T& a,const T& b) { return(a>b?a:b); } static inline void ClearMemory(void* p,U sz) { memset(p,0,(size_t)sz); } #if 0 template
static inline void Raise(const T& object) { throw(object); } #else template
static inline void Raise(const T&) {} #endif // // GJK // struct GJK { struct Mkv { Vector3 w; /* Minkowski vertice */ Vector3 r; /* Ray */ }; struct He { Vector3 v; He* n; }; btStackAlloc* sa; btBlock* sablock; He* table[GJK_hashsize]; Rotation wrotations[2]; Vector3 positions[2]; const btConvexShape* shapes[2]; Mkv simplex[5]; Vector3 ray; U order; U iterations; F margin; Z failed; // GJK(btStackAlloc* psa, const Rotation& wrot0,const Vector3& pos0,const btConvexShape* shape0, const Rotation& wrot1,const Vector3& pos1,const btConvexShape* shape1, F pmargin=0) { wrotations[0]=wrot0;positions[0]=pos0;shapes[0]=shape0; wrotations[1]=wrot1;positions[1]=pos1;shapes[1]=shape1; sa =psa; sablock =sa->beginBlock(); margin =pmargin; failed =false; } // ~GJK() { sa->endBlock(sablock); } // vdh : very dumm hash static inline U Hash(const Vector3& v) { //this doesn't compile under GCC 3.3.5, so add the ()... //const U h(U(v[0]*15461)^U(v[1]*83003)^U(v[2]*15473)); //return(((*((const U*)&h))*169639)&GJK_hashmask); const U h((U)(v[0]*15461)^(U)(v[1]*83003)^(U)(v[2]*15473)); return(((*((const U*)&h))*169639)&GJK_hashmask); } // inline Vector3 LocalSupport(const Vector3& d,U i) const { return(wrotations[i]*shapes[i]->BTLOCALSUPPORT(d*wrotations[i])+positions[i]); } // inline void Support(const Vector3& d,Mkv& v) const { v.r = d; v.w = LocalSupport(d,0)-LocalSupport(-d,1)+d*margin; } #define SPX(_i_) simplex[_i_] #define SPXW(_i_) simplex[_i_].w // inline Z FetchSupport() { const U h(Hash(ray)); He* e = (He*)(table[h]); while(e) { if(e->v==ray) { --order;return(false); } else e=e->n; } e=(He*)sa->allocate(sizeof(He));e->v=ray;e->n=table[h];table[h]=e; Support(ray,simplex[++order]); return(ray.dot(SPXW(order))>0); } // inline Z SolveSimplex2(const Vector3& ao,const Vector3& ab) { if(ab.dot(ao)>=0) { const Vector3 cabo(cross(ab,ao)); if(cabo.length2()>GJK_sqinsimplex_eps) { ray=cross(cabo,ab); } else { return(true); } } else { order=0;SPX(0)=SPX(1);ray=ao; } return(false); } // inline Z SolveSimplex3(const Vector3& ao,const Vector3& ab,const Vector3& ac) { return(SolveSimplex3a(ao,ab,ac,cross(ab,ac))); } // inline Z SolveSimplex3a(const Vector3& ao,const Vector3& ab,const Vector3& ac,const Vector3& cabc) { if((cross(cabc,ab)).dot(ao)<-GJK_insimplex_eps) { order=1;SPX(0)=SPX(1);SPX(1)=SPX(2);return(SolveSimplex2(ao,ab)); } else if((cross(cabc,ac)).dot(ao)>+GJK_insimplex_eps) { order=1;SPX(1)=SPX(2);return(SolveSimplex2(ao,ac)); } else { const F d(cabc.dot(ao)); if(Abs(d)>GJK_insimplex_eps) { if(d>0) { ray=cabc; } else { ray=-cabc;Swap(SPX(0),SPX(1)); } return(false); } else return(true); } } // inline Z SolveSimplex4(const Vector3& ao,const Vector3& ab,const Vector3& ac,const Vector3& ad) { Vector3 crs; if((crs=cross(ab,ac)).dot(ao)>GJK_insimplex_eps) { order=2;SPX(0)=SPX(1);SPX(1)=SPX(2);SPX(2)=SPX(3);return(SolveSimplex3a(ao,ab,ac,crs)); } else if((crs=cross(ac,ad)).dot(ao)>GJK_insimplex_eps) { order=2;SPX(2)=SPX(3);return(SolveSimplex3a(ao,ac,ad,crs)); } else if((crs=cross(ad,ab)).dot(ao)>GJK_insimplex_eps) { order=2;SPX(1)=SPX(0);SPX(0)=SPX(2);SPX(2)=SPX(3);return(SolveSimplex3a(ao,ad,ab,crs)); } else return(true); } // inline Z SearchOrigin(const Vector3& initray=Vector3(1,0,0)) { iterations = 0; order = (U)-1; failed = false; ray = initray.normalized(); ClearMemory(table,sizeof(void*)*GJK_hashsize); FetchSupport(); ray = -SPXW(0); for(;iterations
0?rl:1; if(FetchSupport()) { Z found(false); switch(order) { case 1: found=SolveSimplex2(-SPXW(1),SPXW(0)-SPXW(1));break; case 2: found=SolveSimplex3(-SPXW(2),SPXW(1)-SPXW(2),SPXW(0)-SPXW(2));break; case 3: found=SolveSimplex4(-SPXW(3),SPXW(2)-SPXW(3),SPXW(1)-SPXW(3),SPXW(0)-SPXW(3));break; } if(found) return(true); } else return(false); } failed=true; return(false); } // inline Z EncloseOrigin() { switch(order) { /* Point */ case 0: break; /* Line */ case 1: { const Vector3 ab(SPXW(1)-SPXW(0)); const Vector3 b[]={ cross(ab,Vector3(1,0,0)), cross(ab,Vector3(0,1,0)), cross(ab,Vector3(0,0,1))}; const F m[]={b[0].length2(),b[1].length2(),b[2].length2()}; const Rotation r(btQuaternion(ab.normalized(),cst2Pi/3)); Vector3 w(b[m[0]>m[1]?m[0]>m[2]?0:2:m[1]>m[2]?1:2]); Support(w.normalized(),simplex[4]);w=r*w; Support(w.normalized(),simplex[2]);w=r*w; Support(w.normalized(),simplex[3]);w=r*w; order=4; return(true); } break; /* Triangle */ case 2: { const Vector3 n(cross((SPXW(1)-SPXW(0)),(SPXW(2)-SPXW(0))).normalized()); Support( n,simplex[3]); Support(-n,simplex[4]); order=4; return(true); } break; /* Tetrahedron */ case 3: return(true); /* Hexahedron */ case 4: return(true); } return(false); } #undef SPX #undef SPXW }; // // EPA // struct EPA { // struct Face { const GJK::Mkv* v[3]; Face* f[3]; U e[3]; Vector3 n; F d; U mark; Face* prev; Face* next; Face() {} }; // GJK* gjk; btStackAlloc* sa; Face* root; U nfaces; U iterations; Vector3 features[2][3]; Vector3 nearest[2]; Vector3 normal; F depth; Z failed; // EPA(GJK* pgjk) { gjk = pgjk; sa = pgjk->sa; } // ~EPA() { } // inline Vector3 GetCoordinates(const Face* face) const { const Vector3 o(face->n*-face->d); const F a[]={ cross(face->v[0]->w-o,face->v[1]->w-o).length(), cross(face->v[1]->w-o,face->v[2]->w-o).length(), cross(face->v[2]->w-o,face->v[0]->w-o).length()}; const F sm(a[0]+a[1]+a[2]); return(Vector3(a[1],a[2],a[0])/(sm>0?sm:1)); } // inline Face* FindBest() const { Face* bf = 0; if(root) { Face* cf = root; F bd(cstInf); do { if(cf->d
d;bf=cf; } } while(0!=(cf=cf->next)); } return(bf); } // inline Z Set(Face* f,const GJK::Mkv* a,const GJK::Mkv* b,const GJK::Mkv* c) const { const Vector3 nrm(cross(b->w-a->w,c->w-a->w)); const F len(nrm.length()); const Z valid( (cross(a->w,b->w).dot(nrm)>=-EPA_inface_eps)&& (cross(b->w,c->w).dot(nrm)>=-EPA_inface_eps)&& (cross(c->w,a->w).dot(nrm)>=-EPA_inface_eps)); f->v[0] = a; f->v[1] = b; f->v[2] = c; f->mark = 0; f->n = nrm/(len>0?len:cstInf); f->d = Max
(0,-f->n.dot(a->w)); return(valid); } // inline Face* NewFace(const GJK::Mkv* a,const GJK::Mkv* b,const GJK::Mkv* c) { Face* pf = (Face*)sa->allocate(sizeof(Face)); if(Set(pf,a,b,c)) { if(root) root->prev=pf; pf->prev=0; pf->next=root; root =pf; ++nfaces; } else { pf->prev=pf->next=0; } return(pf); } // inline void Detach(Face* face) { if(face->prev||face->next) { --nfaces; if(face==root) { root=face->next;root->prev=0; } else { if(face->next==0) { face->prev->next=0; } else { face->prev->next=face->next;face->next->prev=face->prev; } } face->prev=face->next=0; } } // inline void Link(Face* f0,U e0,Face* f1,U e1) const { f0->f[e0]=f1;f1->e[e1]=e0; f1->f[e1]=f0;f0->e[e0]=e1; } // GJK::Mkv* Support(const Vector3& w) const { GJK::Mkv* v =(GJK::Mkv*)sa->allocate(sizeof(GJK::Mkv)); gjk->Support(w,*v); return(v); } // U BuildHorizon(U markid,const GJK::Mkv* w,Face& f,U e,Face*& cf,Face*& ff) { static const U mod3[]={0,1,2,0,1}; U ne(0); if(f.mark!=markid) { const U e1(mod3[e+1]); if((f.n.dot(w->w)+f.d)>0) { Face* nf = NewFace(f.v[e1],f.v[e],w); Link(nf,0,&f,e); if(cf) Link(cf,1,nf,2); else ff=nf; cf=nf;ne=1; } else { const U e2(mod3[e+2]); Detach(&f); f.mark = markid; ne += BuildHorizon(markid,w,*f.f[e1],f.e[e1],cf,ff); ne += BuildHorizon(markid,w,*f.f[e2],f.e[e2],cf,ff); } } return(ne); } // inline F EvaluatePD(F accuracy=EPA_accuracy) { btBlock* sablock = sa->beginBlock(); Face* bestface = 0; U markid(1); depth = -cstInf; normal = Vector3(0,0,0); root = 0; nfaces = 0; iterations = 0; failed = false; /* Prepare hull */ if(gjk->EncloseOrigin()) { const U* pfidx = 0; U nfidx= 0; const U* peidx = 0; U neidx = 0; GJK::Mkv* basemkv[5]; Face* basefaces[6]; switch(gjk->order) { /* Tetrahedron */ case 3: { static const U fidx[4][3]={{2,1,0},{3,0,1},{3,1,2},{3,2,0}}; static const U eidx[6][4]={{0,0,2,1},{0,1,1,1},{0,2,3,1},{1,0,3,2},{2,0,1,2},{3,0,2,2}}; pfidx=(const U*)fidx;nfidx=4;peidx=(const U*)eidx;neidx=6; } break; /* Hexahedron */ case 4: { static const U fidx[6][3]={{2,0,4},{4,1,2},{1,4,0},{0,3,1},{0,2,3},{1,3,2}}; static const U eidx[9][4]={{0,0,4,0},{0,1,2,1},{0,2,1,2},{1,1,5,2},{1,0,2,0},{2,2,3,2},{3,1,5,0},{3,0,4,2},{5,1,4,1}}; pfidx=(const U*)fidx;nfidx=6;peidx=(const U*)eidx;neidx=9; } break; } U i; for( i=0;i<=gjk->order;++i) { basemkv[i]=(GJK::Mkv*)sa->allocate(sizeof(GJK::Mkv));*basemkv[i]=gjk->simplex[i]; } for( i=0;i
endBlock(sablock); return(depth); } /* Expand hull */ for(;iterations
n); const F d(bf->n.dot(w->w)+bf->d); bestface = bf; if(d<-accuracy) { Face* cf =0; Face* ff =0; U nf = 0; Detach(bf); bf->mark=++markid; for(U i=0;i<3;++i) { nf+=BuildHorizon(markid,w,*bf->f[i],bf->e[i],cf,ff); } if(nf<=2) { break; } Link(cf,1,ff,2); } else break; } else break; } /* Extract contact */ if(bestface) { const Vector3 b(GetCoordinates(bestface)); normal = bestface->n; depth = Max
(0,bestface->d); for(U i=0;i<2;++i) { const F s(F(i?-1:1)); for(U j=0;j<3;++j) { features[i][j]=gjk->LocalSupport(s*bestface->v[j]->r,i); } } nearest[0] = features[0][0]*b.x()+features[0][1]*b.y()+features[0][2]*b.z(); nearest[1] = features[1][0]*b.x()+features[1][1]*b.y()+features[1][2]*b.z(); } else failed=true; sa->endBlock(sablock); return(depth); } }; } // // Api // using namespace gjkepa_impl; // bool btGjkEpaSolver::Collide(const btConvexShape *shape0,const btTransform &wtrs0, const btConvexShape *shape1,const btTransform &wtrs1, btScalar radialmargin, btStackAlloc* stackAlloc, sResults& results) { /* Initialize */ results.witnesses[0] = results.witnesses[1] = results.normal = Vector3(0,0,0); results.depth = 0; results.status = sResults::Separated; results.epa_iterations = 0; results.gjk_iterations = 0; /* Use GJK to locate origin */ GJK gjk(stackAlloc, wtrs0.getBasis(),wtrs0.getOrigin(),shape0, wtrs1.getBasis(),wtrs1.getOrigin(),shape1, radialmargin+EPA_accuracy); const Z collide(gjk.SearchOrigin()); results.gjk_iterations = gjk.iterations+1; if(collide) { /* Then EPA for penetration depth */ EPA epa(&gjk); const F pd(epa.EvaluatePD()); results.epa_iterations = epa.iterations+1; if(pd>0) { results.status = sResults::Penetrating; results.normal = epa.normal; results.depth = pd; results.witnesses[0] = epa.nearest[0]; results.witnesses[1] = epa.nearest[1]; return(true); } else { if(epa.failed) results.status=sResults::EPA_Failed; } } else { if(gjk.failed) results.status=sResults::GJK_Failed; } return(false); }
btGjkEpa.cpp
网页地址
文件地址
上一页
9/27
下一页
下载
( 15 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.