x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
btRaycastVehicle.cpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletDynamics\Vehicle\btRaycastVehicle.cpp
旋转
特效
属性
历史版本
/* * Copyright (c) 2005 Erwin Coumans http://continuousphysics.com/Bullet/ * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies. * Erwin Coumans makes no representations about the suitability * of this software for any purpose. * It is provided "as is" without express or implied warranty. */ #include "LinearMath/btVector3.h" #include "btRaycastVehicle.h" #include "BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.h" #include "BulletDynamics/ConstraintSolver/btJacobianEntry.h" #include "LinearMath/btQuaternion.h" #include "BulletDynamics/Dynamics/btDynamicsWorld.h" #include "btVehicleRaycaster.h" #include "btWheelInfo.h" #include "LinearMath/btMinMax.h" #include "BulletDynamics/ConstraintSolver/btContactConstraint.h" static btRigidBody s_fixedObject( 0,0,0); btRaycastVehicle::btRaycastVehicle(const btVehicleTuning& tuning,btRigidBody* chassis, btVehicleRaycaster* raycaster ) : btTypedConstraint(VEHICLE_CONSTRAINT_TYPE), m_vehicleRaycaster(raycaster), m_pitchControl(btScalar(0.)) { m_chassisBody = chassis; m_indexRightAxis = 0; m_indexUpAxis = 2; m_indexForwardAxis = 1; defaultInit(tuning); } void btRaycastVehicle::defaultInit(const btVehicleTuning& tuning) { (void)tuning; m_currentVehicleSpeedKmHour = btScalar(0.); m_steeringValue = btScalar(0.); } btRaycastVehicle::~btRaycastVehicle() { } // // basically most of the code is general for 2 or 4 wheel vehicles, but some of it needs to be reviewed // btWheelInfo& btRaycastVehicle::addWheel( const btVector3& connectionPointCS, const btVector3& wheelDirectionCS0,const btVector3& wheelAxleCS, btScalar suspensionRestLength, btScalar wheelRadius,const btVehicleTuning& tuning, bool isFrontWheel) { btWheelInfoConstructionInfo ci; ci.m_chassisConnectionCS = connectionPointCS; ci.m_wheelDirectionCS = wheelDirectionCS0; ci.m_wheelAxleCS = wheelAxleCS; ci.m_suspensionRestLength = suspensionRestLength; ci.m_wheelRadius = wheelRadius; ci.m_suspensionStiffness = tuning.m_suspensionStiffness; ci.m_wheelsDampingCompression = tuning.m_suspensionCompression; ci.m_wheelsDampingRelaxation = tuning.m_suspensionDamping; ci.m_frictionSlip = tuning.m_frictionSlip; ci.m_bIsFrontWheel = isFrontWheel; ci.m_maxSuspensionTravelCm = tuning.m_maxSuspensionTravelCm; m_wheelInfo.push_back( btWheelInfo(ci)); btWheelInfo& wheel = m_wheelInfo[getNumWheels()-1]; updateWheelTransformsWS( wheel , false ); updateWheelTransform(getNumWheels()-1,false); return wheel; } const btTransform& btRaycastVehicle::getWheelTransformWS( int wheelIndex ) const { assert(wheelIndex < getNumWheels()); const btWheelInfo& wheel = m_wheelInfo[wheelIndex]; return wheel.m_worldTransform; } void btRaycastVehicle::updateWheelTransform( int wheelIndex , bool interpolatedTransform) { btWheelInfo& wheel = m_wheelInfo[ wheelIndex ]; updateWheelTransformsWS(wheel,interpolatedTransform); btVector3 up = -wheel.m_raycastInfo.m_wheelDirectionWS; const btVector3& right = wheel.m_raycastInfo.m_wheelAxleWS; btVector3 fwd = up.cross(right); fwd = fwd.normalize(); // up = right.cross(fwd); // up.normalize(); //rotate around steering over de wheelAxleWS btScalar steering = wheel.m_steering; btQuaternion steeringOrn(up,steering);//wheel.m_steering); btMatrix3x3 steeringMat(steeringOrn); btQuaternion rotatingOrn(right,-wheel.m_rotation); btMatrix3x3 rotatingMat(rotatingOrn); btMatrix3x3 basis2( right[0],fwd[0],up[0], right[1],fwd[1],up[1], right[2],fwd[2],up[2] ); wheel.m_worldTransform.setBasis(steeringMat * rotatingMat * basis2); wheel.m_worldTransform.setOrigin( wheel.m_raycastInfo.m_hardPointWS + wheel.m_raycastInfo.m_wheelDirectionWS * wheel.m_raycastInfo.m_suspensionLength ); } void btRaycastVehicle::resetSuspension() { int i; for (i=0;i
getMotionState())) { getRigidBody()->getMotionState()->getWorldTransform(chassisTrans); } wheel.m_raycastInfo.m_hardPointWS = chassisTrans( wheel.m_chassisConnectionPointCS ); wheel.m_raycastInfo.m_wheelDirectionWS = chassisTrans.getBasis() * wheel.m_wheelDirectionCS ; wheel.m_raycastInfo.m_wheelAxleWS = chassisTrans.getBasis() * wheel.m_wheelAxleCS; } btScalar btRaycastVehicle::rayCast(btWheelInfo& wheel) { updateWheelTransformsWS( wheel,false); btScalar depth = -1; btScalar raylen = wheel.getSuspensionRestLength()+wheel.m_wheelsRadius; btVector3 rayvector = wheel.m_raycastInfo.m_wheelDirectionWS * (raylen); const btVector3& source = wheel.m_raycastInfo.m_hardPointWS; wheel.m_raycastInfo.m_contactPointWS = source + rayvector; const btVector3& target = wheel.m_raycastInfo.m_contactPointWS; btScalar param = btScalar(0.); btVehicleRaycaster::btVehicleRaycasterResult rayResults; assert(m_vehicleRaycaster); void* object = m_vehicleRaycaster->castRay(source,target,rayResults); wheel.m_raycastInfo.m_groundObject = 0; if (object) { param = rayResults.m_distFraction; depth = raylen * rayResults.m_distFraction; wheel.m_raycastInfo.m_contactNormalWS = rayResults.m_hitNormalInWorld; wheel.m_raycastInfo.m_isInContact = true; wheel.m_raycastInfo.m_groundObject = &s_fixedObject;//todo for driving on dynamic/movable objects!; //wheel.m_raycastInfo.m_groundObject = object; btScalar hitDistance = param*raylen; wheel.m_raycastInfo.m_suspensionLength = hitDistance - wheel.m_wheelsRadius; //clamp on max suspension travel btScalar minSuspensionLength = wheel.getSuspensionRestLength() - wheel.m_maxSuspensionTravelCm*btScalar(0.01); btScalar maxSuspensionLength = wheel.getSuspensionRestLength()+ wheel.m_maxSuspensionTravelCm*btScalar(0.01); if (wheel.m_raycastInfo.m_suspensionLength < minSuspensionLength) { wheel.m_raycastInfo.m_suspensionLength = minSuspensionLength; } if (wheel.m_raycastInfo.m_suspensionLength > maxSuspensionLength) { wheel.m_raycastInfo.m_suspensionLength = maxSuspensionLength; } wheel.m_raycastInfo.m_contactPointWS = rayResults.m_hitPointInWorld; btScalar denominator= wheel.m_raycastInfo.m_contactNormalWS.dot( wheel.m_raycastInfo.m_wheelDirectionWS ); btVector3 chassis_velocity_at_contactPoint; btVector3 relpos = wheel.m_raycastInfo.m_contactPointWS-getRigidBody()->getCenterOfMassPosition(); chassis_velocity_at_contactPoint = getRigidBody()->getVelocityInLocalPoint(relpos); btScalar projVel = wheel.m_raycastInfo.m_contactNormalWS.dot( chassis_velocity_at_contactPoint ); if ( denominator >= btScalar(-0.1)) { wheel.m_suspensionRelativeVelocity = btScalar(0.0); wheel.m_clippedInvContactDotSuspension = btScalar(1.0) / btScalar(0.1); } else { btScalar inv = btScalar(-1.) / denominator; wheel.m_suspensionRelativeVelocity = projVel * inv; wheel.m_clippedInvContactDotSuspension = inv; } } else { //put wheel info as in rest position wheel.m_raycastInfo.m_suspensionLength = wheel.getSuspensionRestLength(); wheel.m_suspensionRelativeVelocity = btScalar(0.0); wheel.m_raycastInfo.m_contactNormalWS = - wheel.m_raycastInfo.m_wheelDirectionWS; wheel.m_clippedInvContactDotSuspension = btScalar(1.0); } return depth; } const btTransform& btRaycastVehicle::getChassisWorldTransform() const { /*if (getRigidBody()->getMotionState()) { btTransform chassisWorldTrans; getRigidBody()->getMotionState()->getWorldTransform(chassisWorldTrans); return chassisWorldTrans; } */ return getRigidBody()->getCenterOfMassTransform(); } void btRaycastVehicle::updateVehicle( btScalar step ) { { for (int i=0;i
getLinearVelocity().length(); const btTransform& chassisTrans = getChassisWorldTransform(); btVector3 forwardW ( chassisTrans.getBasis()[0][m_indexForwardAxis], chassisTrans.getBasis()[1][m_indexForwardAxis], chassisTrans.getBasis()[2][m_indexForwardAxis]); if (forwardW.dot(getRigidBody()->getLinearVelocity()) < btScalar(0.)) { m_currentVehicleSpeedKmHour *= btScalar(-1.); } // // simulate suspension // int i=0; for (i=0;i
gMaxSuspensionForce) { suspensionForce = gMaxSuspensionForce; } btVector3 impulse = wheel.m_raycastInfo.m_contactNormalWS * suspensionForce * step; btVector3 relpos = wheel.m_raycastInfo.m_contactPointWS - getRigidBody()->getCenterOfMassPosition(); getRigidBody()->applyImpulse(impulse, relpos); } updateFriction( step); for (i=0;i
getCenterOfMassPosition(); btVector3 vel = getRigidBody()->getVelocityInLocalPoint( relpos ); if (wheel.m_raycastInfo.m_isInContact) { const btTransform& chassisWorldTransform = getChassisWorldTransform(); btVector3 fwd ( chassisWorldTransform.getBasis()[0][m_indexForwardAxis], chassisWorldTransform.getBasis()[1][m_indexForwardAxis], chassisWorldTransform.getBasis()[2][m_indexForwardAxis]); btScalar proj = fwd.dot(wheel.m_raycastInfo.m_contactNormalWS); fwd -= wheel.m_raycastInfo.m_contactNormalWS * proj; btScalar proj2 = fwd.dot(vel); wheel.m_deltaRotation = (proj2 * step) / (wheel.m_wheelsRadius); wheel.m_rotation += wheel.m_deltaRotation; } else { wheel.m_rotation += wheel.m_deltaRotation; } wheel.m_deltaRotation *= btScalar(0.99);//damping of rotation when not in contact } } void btRaycastVehicle::setSteeringValue(btScalar steering,int wheel) { assert(wheel>=0 && wheel < getNumWheels()); btWheelInfo& wheelInfo = getWheelInfo(wheel); wheelInfo.m_steering = steering; } btScalar btRaycastVehicle::getSteeringValue(int wheel) const { return getWheelInfo(wheel).m_steering; } void btRaycastVehicle::applyEngineForce(btScalar force, int wheel) { assert(wheel>=0 && wheel < getNumWheels()); btWheelInfo& wheelInfo = getWheelInfo(wheel); wheelInfo.m_engineForce = force; } const btWheelInfo& btRaycastVehicle::getWheelInfo(int index) const { btAssert((index >= 0) && (index < getNumWheels())); return m_wheelInfo[index]; } btWheelInfo& btRaycastVehicle::getWheelInfo(int index) { btAssert((index >= 0) && (index < getNumWheels())); return m_wheelInfo[index]; } void btRaycastVehicle::setBrake(btScalar brake,int wheelIndex) { btAssert((wheelIndex >= 0) && (wheelIndex < getNumWheels())); getWheelInfo(wheelIndex).m_brake = brake; } void btRaycastVehicle::updateSuspension(btScalar deltaTime) { (void)deltaTime; btScalar chassisMass = btScalar(1.) / m_chassisBody->getInvMass(); for (int w_it=0; w_it
computeImpulseDenominator(frictionPosWorld,frictionDirectionWorld); btScalar denom1 = body1->computeImpulseDenominator(frictionPosWorld,frictionDirectionWorld); btScalar relaxation = 1.f; m_jacDiagABInv = relaxation/(denom0+denom1); } }; btScalar calcRollingFriction(btWheelContactPoint& contactPoint) { btScalar j1=0.f; const btVector3& contactPosWorld = contactPoint.m_frictionPositionWorld; btVector3 rel_pos1 = contactPosWorld - contactPoint.m_body0->getCenterOfMassPosition(); btVector3 rel_pos2 = contactPosWorld - contactPoint.m_body1->getCenterOfMassPosition(); btScalar maxImpulse = contactPoint.m_maxImpulse; btVector3 vel1 = contactPoint.m_body0->getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = contactPoint.m_body1->getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; btScalar vrel = contactPoint.m_frictionDirectionWorld.dot(vel); // calculate j that moves us to zero relative velocity j1 = -vrel * contactPoint.m_jacDiagABInv; btSetMin(j1, maxImpulse); btSetMax(j1, -maxImpulse); return j1; } btScalar sideFrictionStiffness2 = btScalar(1.0); void btRaycastVehicle::updateFriction(btScalar timeStep) { //calculate the impulse, so that the wheels don't move sidewards int numWheel = getNumWheels(); if (!numWheel) return; m_forwardWS.resize(numWheel); m_axle.resize(numWheel); m_forwardImpulse.resize(numWheel); m_sideImpulse.resize(numWheel); int numWheelsOnGround = 0; //collapse all those loops into one! for (int i=0;i
maximpSquared) { sliding = true; btScalar factor = maximp / btSqrt(impulseSquared); m_wheelInfo[wheel].m_skidInfo *= factor; } } } } if (sliding) { for (int wheel = 0;wheel < getNumWheels(); wheel++) { if (m_sideImpulse[wheel] != btScalar(0.)) { if (m_wheelInfo[wheel].m_skidInfo< btScalar(1.)) { m_forwardImpulse[wheel] *= m_wheelInfo[wheel].m_skidInfo; m_sideImpulse[wheel] *= m_wheelInfo[wheel].m_skidInfo; } } } } // apply the impulses { for (int wheel = 0;wheel
getCenterOfMassPosition(); if (m_forwardImpulse[wheel] != btScalar(0.)) { m_chassisBody->applyImpulse(m_forwardWS[wheel]*(m_forwardImpulse[wheel]),rel_pos); } if (m_sideImpulse[wheel] != btScalar(0.)) { class btRigidBody* groundObject = (class btRigidBody*) m_wheelInfo[wheel].m_raycastInfo.m_groundObject; btVector3 rel_pos2 = wheelInfo.m_raycastInfo.m_contactPointWS - groundObject->getCenterOfMassPosition(); btVector3 sideImp = m_axle[wheel] * m_sideImpulse[wheel]; rel_pos[2] *= wheelInfo.m_rollInfluence; m_chassisBody->applyImpulse(sideImp,rel_pos); //apply friction impulse on the ground groundObject->applyImpulse(-sideImp,rel_pos2); } } } } void* btDefaultVehicleRaycaster::castRay(const btVector3& from,const btVector3& to, btVehicleRaycasterResult& result) { // RayResultCallback& resultCallback; btCollisionWorld::ClosestRayResultCallback rayCallback(from,to); m_dynamicsWorld->rayTest(from, to, rayCallback); if (rayCallback.HasHit()) { btRigidBody* body = btRigidBody::upcast(rayCallback.m_collisionObject); if (body) { result.m_hitPointInWorld = rayCallback.m_hitPointWorld; result.m_hitNormalInWorld = rayCallback.m_hitNormalWorld; result.m_hitNormalInWorld.normalize(); result.m_distFraction = rayCallback.m_closestHitFraction; return body; } } return 0; }
btRaycastVehicle.cpp
网页地址
文件地址
上一页 1/5
下一页
下载
( 20 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.