x
Yes
No
Do you want to visit DriveHQ English website?
首页
产品服务
价格
免费试用
下载客户端
关于我们
云文件服务
|
云备份服务
|
FTP服务
|
企业邮箱服务
|
网站托管
|
客户端软件
云文件服务
云备份服务
FTP服务
企业级邮箱服务
网站托管
客户端软件
acos.hpp - Hosted on DriveHQ Cloud IT Platform
返回上层目录
上传
下载
共享
发布
新建文件夹
新建文件
复制
剪切
删除
粘贴
评论
升级服务
路径: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\math\complex\acos.hpp
旋转
特效
属性
历史版本
// (C) Copyright John Maddock 2005. // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_COMPLEX_ACOS_INCLUDED #define BOOST_MATH_COMPLEX_ACOS_INCLUDED #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED # include
#endif #ifndef BOOST_MATH_LOG1P_INCLUDED # include
#endif #include
#ifdef BOOST_NO_STDC_NAMESPACE namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } #endif namespace boost{ namespace math{ template
std::complex
acos(const std::complex
& z) { // // This implementation is a transcription of the pseudo-code in: // // "Implementing the Complex Arcsine and Arccosine Functions using Exception Handling." // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang. // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997. // // // These static constants should really be in a maths constants library: // static const T one = static_cast
(1); //static const T two = static_cast
(2); static const T half = static_cast
(0.5L); static const T a_crossover = static_cast
(1.5L); static const T b_crossover = static_cast
(0.6417L); static const T s_pi = static_cast
(3.141592653589793238462643383279502884197L); static const T half_pi = static_cast
(1.57079632679489661923132169163975144L); static const T log_two = static_cast
(0.69314718055994530941723212145817657L); static const T quarter_pi = static_cast
(0.78539816339744830961566084581987572L); // // Get real and imaginary parts, discard the signs as we can // figure out the sign of the result later: // T x = std::fabs(z.real()); T y = std::fabs(z.imag()); T real, imag; // these hold our result // // Handle special cases specified by the C99 standard, // many of these special cases aren't really needed here, // but doing it this way prevents overflow/underflow arithmetic // in the main body of the logic, which may trip up some machines: // if(std::numeric_limits
::has_infinity && (x == std::numeric_limits
::infinity())) { if(y == std::numeric_limits
::infinity()) { real = quarter_pi; imag = std::numeric_limits
::infinity(); } else if(detail::test_is_nan(y)) { return std::complex
(y, -std::numeric_limits
::infinity()); } else { // y is not infinity or nan: real = 0; imag = std::numeric_limits
::infinity(); } } else if(detail::test_is_nan(x)) { if(y == std::numeric_limits
::infinity()) return std::complex
(x, (z.imag() < 0) ? std::numeric_limits
::infinity() : -std::numeric_limits
::infinity()); return std::complex
(x, x); } else if(std::numeric_limits
::has_infinity && (y == std::numeric_limits
::infinity())) { real = half_pi; imag = std::numeric_limits
::infinity(); } else if(detail::test_is_nan(y)) { return std::complex
((x == 0) ? half_pi : y, y); } else { // // What follows is the regular Hull et al code, // begin with the special case for real numbers: // if((y == 0) && (x <= one)) return std::complex
((x == 0) ? half_pi : std::acos(z.real())); // // Figure out if our input is within the "safe area" identified by Hull et al. // This would be more efficient with portable floating point exception handling; // fortunately the quantities M and u identified by Hull et al (figure 3), // match with the max and min methods of numeric_limits
. // T safe_max = detail::safe_max(static_cast
(8)); T safe_min = detail::safe_min(static_cast
(4)); T xp1 = one + x; T xm1 = x - one; if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min)) { T yy = y * y; T r = std::sqrt(xp1*xp1 + yy); T s = std::sqrt(xm1*xm1 + yy); T a = half * (r + s); T b = x / a; if(b <= b_crossover) { real = std::acos(b); } else { T apx = a + x; if(x <= one) { real = std::atan(std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))/x); } else { real = std::atan((y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))/x); } } if(a <= a_crossover) { T am1; if(x < one) { am1 = half * (yy/(r + xp1) + yy/(s - xm1)); } else { am1 = half * (yy/(r + xp1) + (s + xm1)); } imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one))); } else { imag = std::log(a + std::sqrt(a*a - one)); } } else { // // This is the Hull et al exception handling code from Fig 6 of their paper: // if(y <= (std::numeric_limits
::epsilon() * std::fabs(xm1))) { if(x < one) { real = std::acos(x); imag = y / std::sqrt(xp1*(one-x)); } else { real = 0; if(((std::numeric_limits
::max)() / xp1) > xm1) { // xp1 * xm1 won't overflow: imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1)); } else { imag = log_two + std::log(x); } } } else if(y <= safe_min) { // There is an assumption in Hull et al's analysis that // if we get here then x == 1. This is true for all "good" // machines where : // // E^2 > 8*sqrt(u); with: // // E = std::numeric_limits
::epsilon() // u = (std::numeric_limits
::min)() // // Hull et al provide alternative code for "bad" machines // but we have no way to test that here, so for now just assert // on the assumption: // BOOST_ASSERT(x == 1); real = std::sqrt(y); imag = std::sqrt(y); } else if(std::numeric_limits
::epsilon() * y - one >= x) { real = half_pi; imag = log_two + std::log(y); } else if(x > one) { real = std::atan(y/x); T xoy = x/y; imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy); } else { real = half_pi; T a = std::sqrt(one + y*y); imag = half * boost::math::log1p(static_cast
(2)*y*(y+a)); } } } // // Finish off by working out the sign of the result: // if(z.real() < 0) real = s_pi - real; if(z.imag() > 0) imag = -imag; return std::complex
(real, imag); } } } // namespaces #endif // BOOST_MATH_COMPLEX_ACOS_INCLUDED
acos.hpp
网页地址
文件地址
上一页 1/8
下一页
下载
( 7 KB )
Comments
Total ratings:
0
Average rating:
无评论
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.